pH-dependence of the fast step of maltose hydrolysis catalysed by glucoamylase G1 from Aspergillus niger.
نویسنده
چکیده
The presteady-state kinetic parameters of the interaction ofwild-type glucoamylase from Aspergillus niger (EC 3.2.1.3)with maltose were obtained and analysed in the pH range 3-7 withintervals of 0.25 pH units. In all cases the following three-step reaction scheme was found to apply. [Equation: see text]. The general result of the analysis of the presteady-state kinetics is that glucoamylase G1 is affected by the protonation states of three groups, with pK(a) values of 2.7, 4.5 and 5.7 in the free enzyme and of 2.7, 4.75 and 6.5 in the first enzyme-substrate complex. The protonation of the group in the enzyme-substrate complex with a pK(a) 6.5 hadno effect on k(2) (1640 s(-1)) or k(-2) (20+/-4 s(-1)), but resulted in a stronger enzyme-substrate interaction, due to a decrease of K(1) from 40 to 6.3 mM. In other words,when the substrate is bound, the pK(a) of the acidgroup changes to increase the fraction of reactive enzyme. Since this pK(a) parallels that of the Michaelis complex, known from the pH-dependence of k(cat), the group in question is most probably the catalytic acid Glu-179. Protonation of Glu-179 thus is of no importance in the second step, clearly indicating that this step represents a conformational change and not the actual hydrolysis step of the reaction. Protonation of the pK(a)=4.75 group leads to a small decrease in k(2) to 1090 s(-1), and also to minor changes in K(1). The group with pK(a)=2.7 leads toa major decrease of k(2), of which the limit may bezero, but shows no effect on K(1). Thus no differenceis seen between the pK(a) values of the free enzymeand of the first enzyme-substrate complex at low pH.
منابع مشابه
Effect of maltose on glucoamylase formation by Aspergillus niger.
Low levels of glucoamylase are produced when Aspergillus niger is grown on sorbitol, but substitution of the latter by glucose, maltose, or starch results in greater formation of glucoamylase as measured by enzymatic activity. Both glucoamylase I and glucoamylase II are formed in a yeast extract medium; however, glucoamylase I appears to be the only form produced when ammonium chloride is the n...
متن کاملTHE PRODUCTION OF GLUCOAMYLASE BY ASPERGILLUS NIGER UNDER SOLID STATE CONDITIONS (RESEARCH NOTE)
In this study, Glucoamylase production by Aspergillus Niger was investigated under solid state conditions with low cost by-products of agricultural processes as substrate. Highest enzyme production was observed when a combination of wheat bran (WB) and corn flour (CF) was used as compared to WB+ rice bran, WB+ rice flour and WB alone. Different additions of (CF) were tested and WB+ 10% CF showe...
متن کاملProduction, purification and characterization of the catalytic domain of glucoamylase from Aspergillus niger.
The catalytic domain of glucoamylases G1 and G2 from Aspergillus niger is produced in vitro in high yield by limited proteolysis using either subtilisin Novo or subtilisin Carlsberg. Purification by affinity chromatography on an acarbose-Sepharose column followed by ion-exchange chromatography on HiLoad Q-Sepharose leads to separation of a number of structurally closely related forms of domain....
متن کاملStructure of the catalytic domain of glucoamylase from Aspergillus niger.
Glucoamylase from Aspergillus niger is an industrially important biocatalyst that is utilized in the mass production of glucose from raw starch or soluble oligosaccharides. The G1 isoform consists of a catalytic domain and a starch-binding domain connected by a heavily glycosylated linker region. The amino-terminal catalytic domain of the G1 isoform generated by subtilisin cleavage has been cry...
متن کاملThe intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate
BACKGROUND The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress gla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 349 Pt 2 شماره
صفحات -
تاریخ انتشار 2000